A força iônica de uma solução é uma medida de sua concentração de íons.[1][2] Os compostos iônicos, quando dissolvidos na água, dissociam-se em íons. A concentração total de eletrólitos em solução afeta propriedades importantes, tais como a dissociação e a solubilidade de vários sais. Uma das principais características determinadas pelos íons dissolvidos em uma solução é a sua força iônica.
Quantificação da força iônica[editar | editar código-fonte]
A força iônica, I, de uma solução é função da concentração de todos os íons presentes naquela solução.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde ci é a concentração molar do íon i(mol·dm−3), zi é o número de carga daquele íon, sendo a soma considerada a de todos os íons na solução. Para um eletrólito 1:1 como o cloreto de sódio, a força iônica é igual à concentração. Para o MgSO4, entretanto, a força iônica é quatro vezes maior. De um modo geral, os íons multivalentes contribuem fortemente para o aumento da força iônica.
Por exemplo, a força iônica de uma solução mista de 0,050 mol dm−3 de Na2SO4 e 0,020 mol dm−3 de NaCl é:
Como nas soluções não-ideais on volumes não se comportam de maneira rigorosamente aditiva, é frequentemente preferível trabalhar com a molalidade (mol/kg{H2O}) ao invés da molaridade (mol/L). Neste caso, a força iônica é definida como:
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
i = elemento individual z = carga do elemento
Exemplos[editar | editar código-fonte]
Nos íons com carga unitária formados por eletrólitos completamente dissociados a força iônica tem o mesmo valor da concentração. Numa solução de cloreto de sódio com (NaCl) = 0,001 mol/l a concentração dos íons Na+ e Cl- é igualmente 0,001 mol/l. A força iônica devida a (Na+) = 1 e (Cl-) = -1:
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Nos eletrólitos com proporções de 1:2 ou 2:1, como, por exemplo, o cloreto de cálcio, a força iônica equivale ao triplo da concentração. No caso do cloreto de cálcio ((Ca2+) = 2 e (Cl-) = -1):
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Importância[editar | editar código-fonte]
A força iônica tem um papel central na teoria de Debye–Hückel, que descreve os fortes desvios da idealidade tipicamente encontrados nas soluções iônicas. De acordo com esta teoria o coeficiente de atividade em soluções diluídas depende da raiz do valor da força iônica, fornecendo, por exemplo, numa solução aquosa diluída a 25 °C a seguinte fórmula para estimar o coeficiente de atividade médio a partir da força iônica:
,
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde
.
Durante as titulações, são utilizados meios de alta força iônica para a determinação de constantes de equilíbrio, com a finalidade de minimizar a alteração no coeficiente de atividade dos solutos a baixas concentrações. A água procedente de fontes naturais, têm sempre um valor de força iônica diferente de zero, devido à presença de sais dissolvidos.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl